Prachinburi Cs-137 analysis created: 21 Mar 2023 updated: 23 Mar 2023 RD @ TINT

data of Cs-137 source		value	unit
energy	gamma		662 keV
	beta		0.51 keV
branching ratio	gamma		0.85
half-life	physical		30 years
	biological		70 days
nucleus	р		55
	n		82
current activity	Α		41.14 mCi [1]
current dose rate	D (at 30 cm, open shutter)		1.29 mSv/hr [1]

conversion factors and constan	ts _	value	unit
Ci to Bq		3.70E	+10
Gy to rad			100
Sv to rem			100
micro to milli		1.00E	-03
Gy to Sv (gamma)		1	.00
R to rad (gamma, tissue)		0	.97 [4]
3-month old	ingestion	0.	021 μSv/Bq [3]
adult	ingestion	0.	013 μSv/Bq [3]
mass energy absorption coef	tissue, soft at ~700 keV gamma	3.20E	-02 cm2/g [8]
TODD 1111 [0]			

ICRP guideline [2]		value		unit
safe limit	worker (5-year average)		20	mSv/y
	public		1	mSv/y
per working day	worker	0.	.08	mSv/d
per working hour	worker	0.	.01	mSv/hr
		9.	.62	µSv/hr

natural background radiation		value	unit
	per year	3.50	mSv/y
	per hour	0.40	µSv/hr

formulas		
Eq1: D [R/hr] = 0.5CEN	<pre>D = exposure rate to gamma point source at 1 m (R/hr) C = Activity (Ci) E = gamma energy (MeV) N = gammas per decay at other distance, dose can be calculated from inverse square law: (dose rate 1)x(distance 1)² = (dose rate 2)x(distance 2)²</pre>	[6]
Eq2: D [μSv/hr] = ME/(6*(R^2))	D = dose rate at distance R (μSv/hr) M = Activity (MBq) E = gamma energy (MeV) R = distance (m)	[7]
Eq3: X [R/hr] = AG/(R^2)	<pre>X = exposure rate (R/hr) A = Activity (Ci) G = gamma factor = 19.53 E I (μ/rho) (R m² h⁻¹ Ci⁻¹) R = distance (m) E = gamma energy (MeV) I = gammas per decay μ/rho = mass energy absorption coefficient (cm2/g)</pre>	[4]

calculation			
using dose rate:			
	time to receive 20 mSv (annual limit)	15.50	hr
	time to receive 1 Sv (cancer risk)	32.30	days
using activity: (more fundamenta	l than dose rate, which depends on shape and orientation of source)		
A (Bq)	1	L.52E+09	Bq
ingestion:			
D (3-month old)	ingestion	31.97	Sv
D (adult)	ingestion	19.79	Sv
exposure (Eq1):			
	1-m exposure rate	0.01	R/hr
	1-m dose rate	112.27	µSv/hr
	30-cm dose rate 1,	247.50	µSv/hr
exposure (Eq2):			
	1-m dose rate	167.95	µSv/hr

	30-cm dose rate	1,866.08	µSv/hr	1
exposure (Eq3):				
	1-m exposure rate	1.45E-02	2 R/hr	
	1-m dose rate	140.33	µSv/hr	
	30-cm dose rate	1,559.27	µSv/hr	
average (3 Eqs):	30-cm dose rate (average)	1,557.62	µSv/hr	
	time to receive 20 mSv (annual limit)	12.84	hr	
	time to receive 1 Sv (cancer risk)	26.75	days	
diffusion effect:	10-m dose rate	1.40	µSv/hr	
	time to receive 1 Sv (cancer risk)	81.43	years	
decay effect:	the 81 year is a pessimistic estimate, assuming const	ant radioactivity.	_	
	It actually would take much longer, due to decay. N = N0 * exp(-lambda*t) A = A0 * exp(-lambda *t)	radi (oactive d	lecay
	dose rate \propto activity (exponentially decreasing) dose = integ(dose rate) dt	100 80		
		60 40	e e e e e e	

risks of acute radiation [5]		🛶 no decay 😑	🗕 half life=	5 — ha
1 Sv	Risk of cancer later in life (5 in 100)			
10 Sv	Risk of death within days or weeks			
· · · · ·				
comparison			_	
Chernobyl (Apr 1986)	Cs-137	2,297,297.30	Ci	[9]
Samut Prakan (Jan 2000)	Co-60	420.00	Ci	[10]
Prachinburi (Mar 2023)	Cs-137	0.04	Ci	
	smaller than Chernobyl (only considering Cs-137) by:	55,840,964.93	times	
	smaller than Samut Prakan by:	10,209.04	times	

Refs

1 https://www.oap.go.th/images/documents/information/news/2023/03/ซีเซียม-137_Cs-137_ปราจีนบุรี/14-03-66/Cs137_lostrevised02.pdf

2 https://hps.org/publicinformation/ate/q8900.html

3 https://www.env.go.jp/en/chemi/rhm/basic-info/1st/pdf/basic-1st-02-04.pdf

4 https://www.nrc.gov/docs/ML1122/ML11229A688.pdf

5 https://www.ccohs.ca/oshanswers/phys_agents/ionizing.html

6 https://www.quora.com/How-do-you-calculate-the-dose-rate-from-a-radioactive-source

7 https://ionactive.co.uk/resource-hub/guidance/formula-for-calculating-dose-rates-from-gamma-emitting-radioactive-materials

8 https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/tissue.html

9 https://www.oecd-nea.org/jcms/pl_28292/chernobyl-chapter-ii-the-release-dispersion-deposition-and-behaviour-of-radionuclides

10 https://en.wikipedia.org/wiki/Samut_Prakan_radiation_accident

11 https://www.world-nuclear.org/uploadedFiles/org/Features/Radiation/4_Background_Radiation%281%29.pdf